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Abstract. We look for similarity transformations which yield mappings between different one- 
dimensional reaction-diffusion processes.’ In this way results obtained for special systems can 
be generalized to equivalent reaction-diffusion models. The coagulation (A + A -, A) or 
the annihilation (A + A -+ 0) models can be mapped onto systems in which both processes 
an: allowed. With the help of the coagulation-decoagolation model results for some death- 
decoagulation and annihilation-creation systems are given. We also find a reaction-diffusion 
system which is equivalent to the two-species annihilation model ( A  + B + 0). 

Besides we present numerical results of Monte Carlo simulations.  an accurate description 
of the effects of the reaction rates on the. concentration in one-species diffusion-annihilation 
model is made. The ,Jsymptotic behaviour of the concentralion in the two-species annihilation 
system (A + B - 0) with symmevic initial conditions is studied. 

1. Introduction 

Diffusion controlled reactions in one-dimensional systems have attracted much interest in 
the last few years. They are non-equilibrium statistical systems which exhibit the property 
of self-organization. Mean field rate equations fail to reproduce the dynainics of these 
models which are characterized by non-trivial correlations. Theoretical descriptions of such 
systems have to take into account local fluctuations in,the particle density. 

Exact results have been obtained for some one-dimensional models in the continuum 
from diffusion-like equations [l] and on a one-dimensional lattice [2-4]. In the latter case 
the time evolution of the system is determined by a master equation [SI. It is useful~to 
rewrite it as a Euclidian Schrodinger equation [3]. 

Interesting experimental measurements have been reported recently [6-9]. With the help 
of these experiments the exciton propagation is studied. The conclusion drawn from the 
measurements is that this propagation takes place in one dimension along structures like 
molecular ‘wires’ and chains. The luminescence decay at early times is algebraic: 

This observation yields the conjecture that exciton-exciton annihilation processes take 
place [9] .  However, it is not clear whether exciton-exciton coagulation (fusion) reactions 
happen. In both the annihilation and coagulation chemical models the long-time behaviour 
of the concentration obeys (equation (1.1)). Moreover, we will prove that this asymptotic 
behaviour of the concentration is common to all models in which both reactions take place 
(3.10). We call them annihilation-coagulation systems. The coefficient of the leading term 
depends on the ratio of the rates of these two processes. 
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We show in this paper that all exciton reaction rates can be determined from experimental 
data. In our study we use a numerical and an analytical approach. First, we want to 
determine the next-to-leading term in the long-time expansion of the concentration in 
the coagulation model. Three results are given in the literature concerning this regime. 
An approximative equation for the particle concentration derived from empty interval 
probabilities is obtained in [IO]. A approximation scheme applied to a diffusion-type 
equations is used in [ 11 1. These two approaches lead to almost the same conjecture: 

where R = 1 in [Ill and R = n/4 n. 0.786 in [IO]. Here 1 - A’ is the coagulation rate. 
The time-scale in which the diffusion rate is equal to one is chosen. The coefficient of the 
leading term was exactly computed for A‘ = 0 [12]. In this case the next-to-leading term is 
of order t -3/2 [4] and the operator which appears in the master equation is the Hamiltonian 
of a supersymmemc system [3 ] .  

We verify the conjecture (1.2) by determining the value of the coefficient of the next- 
to-leading term in the A’ # 0 case. It can be computed by solving the Bethe ansatz 
equations for the X X Z  chain in an external field 131. However, this computation is a 
mathematical challenge because one needs to know both the spectra and the eigenvectors of 
the Hamiltonian. Here we investigate this problem with the help of Monte Carlo simulations. 
The numerical data presented in section 4 strongly support the R = 1 conjecture. 

Secondly, we want to find all chemical models which can be described with the help 
of (1.2) and other results concerning the coagulation model. We do this by looking €or 
similarity transformations which map the coagulation model onto other reaction-diffusion 
systems. In [12-14] it was shown that the one-species annihilation and coagulation systems 
are connected. A general proof is given within the framework of the ‘Hamiltonian’ 
formalism. The operators which appear in the master equations describing the two models 
are the Hamiltonians of quantum chains [3] and are equivalent. We say that two reaction- 
diffusion systems are equivalent when the corresponding Hamiltonians can be obtained one 
from the other through a similarity transformation [4]. In this paper we apply this method 
and look for further transformations which connect chemical models and lead to linear 
relations among their observables. Thus one can extend results conceming one reaction- 
diffusion system to all its equivalent ones. 

We prove that the one-species coagulation-annihilation models can be divided into 
equivalence classes with respect to one parameter. Each class also contains a pure 
coagulation and a pure annihilation model. 

Another reaction-diffusion system which has attracted much attention is the two-species 
annihilation model ( A  + B + 0+0). Scaling considerations indicate that, for equal initial 
site occupation probabilities of the two species, the concentration decay is algebraic with a 
time exponent equal to $ [15]. This has been proven in [16]. In [I71 it was conjectured 
that the asymptotic behaviour of the concentration depends on its initial value: 

where K’ = (2n)-3/4 n. 0.252. A similar result was obtained in [IS] through a 
renormalization group analysis for spatial dimensions higher than two. In this work the 
conjectured dependence is validated for small values of c(0). A general closure scheme for 
truncating the hierarchies of the joint density function equations leads to the same formula 
but with K‘ = (32n)-’l4 n. 0.316 [19]. A value of K’ = 0.28 has been numerically 
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determined [17]. We report results of Monte Carlo simulations started at low values of 
the initial concentration. A better estimate for the constant K‘ is obtained. It is in good 
agreement with the values conjectured in [17,18]. 

We also look for the chemical models equivalent to the two-species annihilation 
reaction-diffusion system. 

The paper is structured as follows. In section 2 a brief review of the ‘Hamiltonian’ 
formalism is given. A general condition satisfied by the transfoimations which map 
reaction-diffusion systems among themselves is derived. 

In section 3 we look for chemical models equivalent to systems previously studied. We 
concentrate on systems for which the particle concentration was computed. 

Two models which the procedure is applied to were mentioned before: the one-species 
coagulation and the two-species annihilation reaction-diffusion systems. Another model 
which is exactly solved in some special case is the coagulation-decoagulation one [l, 41. 
We find two reaction-diffusion systems which are equivalent to it: the annihilation-creation 
and the death-decoagulation models. Thus we can give exact solutions for the particle 
number in a probabilistic cellular automaton in which decoagulation and death processes 
are permitted, but particles do not diffuse. 

In the last section new results obtained from Monte Carlo simulations are presented. 

2. The master equation and the similarity transformation 

We begin with a brief review of the ‘Hamiltonian’ description of reaction-diffusion systems. 
w e  will use the same notations and conventions as in [4,20] where a comprehensive 
description of this formalism is given. 

First, one has to constmct the configuration space. Hard-core interactions among 
particles moving on the one-dimensional lattice are considered. This also means that 
multiple occupation of sites is not allowed. If the system is populated with one species 
of particles, each site can be either empty or occupied by one particle. If there are two- 
species of particles each site can be in one of three states. The number of states is denoted 
by N and the lattice length by L. To each site i we attach a N-dimensional vector space V,. 
In the two state models ( N  = 2) the vector ( 1 ,  0) comesponds to a vacancy while the 
vector (0, 1 ) comesponds to an occupation of the site by an A particle. In the threestate 
models (N = 3) the vectors ( 1 ,  0, 0), (0, 1, 0) and (0, 0, 1) correspond to an empty site 
and to occupation of the site by a particle A or B ,  respectively. 

The configuration space has the structure of an L2fold tensor product V = VI L3. . . L3 VL. 
Each of the N L  vectors of the tensor product base corresponds to a possible configuration 
of the lattice. A natural convention used to denote these vectors is obtained by associating 
to each site a variable Bi which takes integer values between 0 and N - 1. In the two-state 
models we use B, = 0 to index a vacancy while pi = 1 corresponds to the presence of an 
A particle. In addition, B; = 2 is used to describe a site that is occupied by a B particle, in 
the three-state models. In this ‘spin basis’ 151 

we define the ket vector 

(81 

which describes the state of the system. E‘([@); t )  stands for the realization probability of 
the configuration { p )  = {PI, . . . , BL} at time I .  
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The state of a system can also be described by the set of empty intervals probabilities 
1211. They are defined as the probabilities to find one or more sequences of consecutive 
vacant sites. This description sometimes simplifies exact computations. 

The dynamics of reaction-diffusion systems are determined by the rates of the allowed 
processes. We consider only reactions which can take place when two hopping particles 
collide. So the set of parameters is given by the probabilities that a state (or, b )  on two 
adjacent sites will change into the state ( y ,  8) after one unit of time, denoted by 

ra.@ y.6 with the convention r:$ = 0. (2.3) 
Here or, b,  y and S take values between 0 and N - 1. The sum of all reaction rates which 
modify the state (a, p )  of two neighbouring sites is denoted by 

All rates are non-negative, constant and real. We discuss only the left-right symmetric case. 
That is, all the rates satisfy the condition 

For one-species systems a list of reactions and corresponding rates is given below: 

diffusion A + 0 - + 0 + A  rate r&' 
annihilation A + A + 0 + 0  rate r; 
creation 0 + 0 + A + A  rate r: 
coagulation A + A --f A 4-0 rate r;; 
decoagulation A + 0 -+ A + A rate riy 
death A + 0 - + 0 + 0  rate r&' 
birth 0 + 0 + A + O  rate r:. 

The master equation [5] describing the time evolution of the probability distribution 
P ( { p ) ;  t )  can be written in the Form of a Euclidian Schrodinger equation [3] 

a 
-1P) = - H I P )  (2.6) 
a t  

where H operates on V. We consider periodic boundaries. Due to the fact that the reactions 
take place only between particles placed on two neighbouring sites this Hamiltonian can be 
written as a sum: 

L H=CH;.  
i= I 

where H;. acts locally on Vi @ %+I. This operator is defined by 

where ExL are N x N matrices with the entries (E"),, = S K . ~ S ~ . ~ , .  
necessarily Hermitian. It ensures the conservation of probability and thus has a bra ground 
state 

(OIH = 0 (2.9) 

(2.8) 

X i s  Hamiltonian is not 
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which is the sum of all basis vectors 
(2.10) 

In other words, if we consider H; as a matrix, equation (2.8) with (2.4) states that the sum 
of the entries from each column is 0. H has the same property (2.9). 

The formal solution of (2.6) is 
IPW) = e x p ( - H W d  (2.11) 

where the initial state is denoted by 12‘0) [3]. 
The expectation value of an observable X is given by the matrix element 

(x)(IP~),  t )  = CX(IBI)P((BI;~) = (olxip(r)). (2.12) 

The advantage of this Hamiltonian formalism is that we can introduce similarity 
VI 

transformations. Our interest is to find those B for which the transformed Hamiltonian 

(2.13) 

also describes the dynamic of a reaction-diffusion system. (The quantities in the transformed 
model are denoted with a-.) Therefore we have to concentrate on local transformations: 

B = b @ b @ . . . @ b  (2.14) 
defined by the L-fold tensor product of a real N x N matrix b. The mapping can easily 
be extended to the computation of expectation values. They can be computed [4] from the 
corresponding expectation values in the ‘original’ model: 

(XKIP~), t )  = (olxexp(-fiWo) 

column of fi; must be 0: 

- 
= (OlXBexp(-Hr)B-]IPo) = (XB)(B-’IPo), t ) .  (2.15) 

Some restrictions have to be imposed on b. First, the sum of the entries from each 

(OIBH, = 0 .  (2.16) 
. .  

A general solution of (2.16) is 
(OlB = p(O1. (2.17) 

Here p is real. We have checked explicitly for evety model considered in this paper 
that transformations obeying (2.16) but not (2.17) do not lead to new mappings. Using 
equation (2.10) and (2.14) one gets the restriction 

N-I 
bij = p1IL. 

i=O 
(2.18) 

We can eliminate an overall scaling parameter by choosing p = 1. Thus the transformations 
are represented by real N x N matrices with the property that the sum of the entries on 
each column is equal to 1. 

Not all these N x (iV - I)-parameter transformations lead to another reaction4ffusion 
system. The matrix elements of the two sites (L = 2) Hamiltonian fi have to satisfy the 
following sign conditions: 

2 f i m m > o  m = 0 ; 1  ... N - 1  
(2.19) 

ri,, G O  m , n = O , I  ... N Z - 1  m f n .  
The remaining transformations map reaction-diffusion system one onto the other. The 
program REDUCE was used to compute the transformed Hamiltonians. 
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3. Mappings between reaction4fTwion systems 

We will start with the Hamiltonians of those chemical models for which the behaviour of 
the particle concentration is known and look for local transfornations which map them onto 
other reaction-diffusion systems. 

There are always the N !  - 1 permutation transformations which interchange (if N = 3 
different types of) particles and vacancies. We will treat everything ‘modulo’ these 
permutations. 

As we mentioned before, we restrict ourselves to the left-right symmetric case. The 
similarity transformation preserves this property. The generalization to the non-symmetric 
case is straightforward. 

In the three-state model we take equal diffusion rates for the two kinds of particles 
(rp; = FE). One parameter of the problem can be eliminated by choosing the time-scale 
in which the diffusion rates are equal to 1. 

3.1. Two-state models 

Exact results are available for the one-species annihilation, coagulation and coagulation- 
decoagulation models. For the last two models the system of linear differential equations 
for the empty interval probabilities was written and solved. These equations decouple 
from those corresponding to many intervals probabilities [20,22]. In the transformed 
models identical systems of equations can be written but for other observables, namely the 
probabilities of having interpolating sequences of vacancies and particles on consecutive 
sites [20]. 

The general form of the local transformation is given by (2.18): 

b = (  ff I - @  @ ) (3.1) 

We will start with the annihilation model and not with the equivalent coagulation one. 
For simplicity we will use the notation a,  instead of r& for the annihilation rate and f for 
the coagulation rate (I’S). 
The annihilation model. In this case particles diffuse and disappear pairwise when two of 
them try to occupy the same site. We denote the corresponding Hamiltonian with Ha.”. and 
introduce, as in [3, 4, 281, the parameter A’ defined by 

(3.2) 

If a < 2, A’ is equal to the probability that no reaction takes place at a two-particles 
encounter. If the parameter A’ is zero exact solutions can be obtained because Ha“”. can be 
expressed in terms of free fermions. In [2] the time dependence of the particle concentration 
is derived in the thermodynamical limit with a full lattice as initial configuration. The finite 
chain is treated exactly in 131 and the two-point correlation functions for the infinite chain are 
obtained. The particle concentration for random homogeneous initial conditions is deduced 
in 141. 

It can easily be seen that the transformed Hamiltonian fi will only fulfil the conditions 
(2.19) if at least one of the entries of b is zero. We take ty = 0. The case ,3 = 0 can be 
obtained by applying a permutation transformation on H. 

It is a well known fact [12-141 that the annihilation and coagulation models are 
equivalent. We reobtain this result by choosing @ = -1. In this case fi is identical 
with the Hamiltonian of the coagulation model 141. 
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This is, however, only one of the possible choices for the transformation parameter. For 
-1 6 B 6-0 we get the Hamiltonian of a system in which apart from diffusion with the 
same rate rdp = 1, the following processes are permitted: 

annihilation with rate 

coagulation with rate 

The matrix b and A' can be written as functions of 2 and f: 
A ' = l - f - 2 / 2  

or equivalently a = ir + 2f. ,One gets the following result: 

A(a, f) = EH,& 

where 

(3.3) 

(3.4) 

and with the parameter A' (equation (3.3)). 
We have obtained a one-parameter group of similarity transformations which act between 

annihilation-coagulation models((a, f )  -+ (2, f)) corresponding to the same value of A' 
(i.e. a /2  + f = 2/2 + f ). It is straightforward to write the transformation which connects 
the coagulation model (a = 5) and one described by H ( 2 ,  f). 

Some explicit results concerning the particle concentration can be given now by applying 
transformations (2.15) on formulae obtained for the annihilation (f = 0) (equation (3.4)) 
or coagulation (a = 0) models. 

Uncorrelated initial conditions are considered: at time f = 0 every site is occupied with 
the same probability p .  In this case 

which corresponds  to^ an initial site occupation probability in' the equivalent annihilation 
model equal to S p .  

The operator of the occupation number of the site i is given by 

n i = ( O  0 O )  1 i '  (3.5) 

The expectation value of the product of k such operators in the coagulation-annihilation 
model is (2.15) 
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We now drop the superscript. 
The exactly solvable case A' = 1 - f - 2 = 0 corresponds to the physical situation 

that whenever two particles meet at least one of them disappears from the system. We 
mentioned in the introduction that the operators which appear in the master equation of 
these models are the Hamiltonians of supersymmetric systems. These reaction-diffusion 
models are mentioned in [23] in connection with the Glauber dynamic of the q state Potts 
model. The results given in [4] for f = 1 or a = 2 can be generalized to these annihilation- 
coagulation models. The particle concentration on a finite chain is 

1 - (-1)kll- (2-  f ) p I L  
I+ll-(2-f)vl~ - cos ~ nk 
2[1 -G-f)pl 

1 - [1 - (2 - f ) P P  - 
( 2 - f ) L  

CO, P, L)  = 

(3.7) 

The behaviour of the concentration (3.7) in the finite-size scaling limit /3] 
4s 
L2 L -+ 03 f -+ 03 with z =  - fixed (3.8) 

can be determined [4]. Exact expressions can be written for the scaling and the first 
correction functions in terms of Jacobi theta functions. We get the following scaling relation: 

1 [ e, ( 0,- iy) +- 1 [ i  --e3 az ( 0,- iy) 
LZ 6 a22 

L c(z, p, L) = - 
2 - f  

(3.9) 

Another interesting result concerns the large-time behaviour of the particle concentration 
in the thermodynamic limit. In the A' # 0 case we start from the conjectured 
expression (1.2). Applying (2.15) we get 

+ O ( P ) .  1 C ( f )  = n + Z f [ c  - -+--- R . A '  1 
a + f  % l - A ' r  

(3.10) 

The coefficient of the leading term depends only on the ratio of the annihilation and 
the coagulation rates. The next-to-leading term (- I / t )  is dependent on A'. Both of them 
are independent of the initial concentration. We will give strong numerical evidence which 
supports the conjecture presented in [l I] (i.e. R = 1) in section 4. 

This asymptotic expression is an exact result in the supersymmetric (A' = 0) case [2]. 
The next-to-leading term is of order t-3/21 For uncorrelated homogeneous initial conditions, 
in the z + 0 limit 141 of (3.9) one gets 

(3.11) 

During the course of the publication of this paper, two other works concerning the 
the annihilation-coagulation model appeared. In one of them the method of similarity 
transformations is used [24], the other one is based on a field-theoretical approach [251. 
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The coagulation-decoagulation model. In this system, apart from diffusion, coagulation and 
its backward reaction are permitted. We will use, as in [41, the variable q defined through 
the decoagulation rate: 17' = r:: + 1. 

Exact solutions of this model are available in the continuum limit [I] and for the finite 
lattice in the case in which the coagulation and diffusion rates are equal (f = 1) [4]. In the 
latter case the steady state concentration is c, = 1 - q-2, independently of L and p .  

We found that the coagulation-decoagulation model is equivalent with two other 
reaction-diffusion systems. Only two transformations, which correspond to special choices 
for a and ,i7 in (3.1), connect this model with others. 

(i) One of them is 

(3.12) 

A 

If f < 1, the transformed Hamiltonian H corresponds to a reaction-diffusion system 
with the following processes: 

diffusion with rate Pip = 1 - f . decoagulation with rate f:: = f + q2 - 1 
death with rate = f. 
r f  f = 1 there is no diffusion in the new model. The motion of the particles is realized 

by successive processes ofdecoagulation (with rate q2 t 1) and death (with rate 1) on 
neighbouring pairs of lattice sites. In this case we can use the results from [4]. For the 
finite chain and homogeneous random initial conditions' the particle concentration is 

- 1 + (-1)X+'If[l ??+I - p ( l  nk - q-2 ) IL  ] sin2 ($) exp(-A:t)) (3.13) _ _  
2q C O S T  

where A: is 

A! = q 2(q + q-') - 4 COS 7 . . (3.14) ( nk) 
The full lattice is a stationary state: 

C ( O , l , L )  =c( t .  1, L )  = 1 .  

Interchanging A and 5 a system with a death rate 17' greater than the decoagulation rate 
1 and zero steady state concentration is obtained. For this choice of rates (3.13) gives the 
concentration of vacancies if p is replaced by 1 - p .  

(ii) The other transformation which gives a mapping of the coagulation-decoagulation 
model is: 

(3.15) 

One obtains an annihilation-creation reaction-diffusion system with rates: 
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diffusion = 9 
annihilation ?; = d = 1 TJ-- 9 + 1 + 1 1' f* 
The annihilation rate is greater than the creation rate. The time unit can be adjusted in 

In the case f = 1 the sum of the annihilation and creation rates is equal to 2. We can 
such a way that the new diffusion rate f;: becomes equal to 1. 

redefine the variable 1: 

where y = i. The concentration for the ,finite chain is 

x sin* (q) exp ( -A,D~))  

where A i  is 

Ai  = +(2h 1 + I  + 1-11 --4cos - s k )  L 

(3.16) 

(3.17) 

The steady-state concentration is c, = (1 - r7-')/2 c 0.5. 
After a permutation of the two lines in (3.15) a system with interchanged annihilation 

and creation rates is obtained. The redefinition of q in the exactly solved case is the same 
as the one given above but with y = -&Formula (3.16) gives the vacancies concentration 
if p is again replaced with 1 - p. The steady-state concentration is c, = (1 + 17-')/2 > 0.5. 

In the limit 9 -+ CO the reaction-diffusion system in 'which all three rates are equal 
is obtained. The operator which appears in the corresponding master equation is the 
Hamiltonian of the king model [3]. 

3.2. Three-state models 

The starting point in this section is the two-species annihilation model. The particles diffuse 
and react when an A and a B try to occupy the same site: 

A+B-+O+O 

We denote the annihilation rate with a (r: = a) ,  as in the preceding section. All diffusion 
rates are equal to I and rt; = 0 modelling hard-core interactions between particles. 
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0 1  0 - 1 0 0  0 0 0  
0 0  1 0 0 0 - 1 0 0  
0 - 1 0  1 0 0  0 0 0  

H = 2 x O O  0 0 0 0  0 0 0  
0 0  0 O O a  0 0 0  
0 0 - 1 0 0 0  1 0 0  
0 0  0 0 . 0 0  0 U 0  

(3.18) 

0 1  0 - 1 0  -(1 -a-]) 0 -(a - 1)(1-01-') 0 
0 0 1 0 0 -(u-l)(l-p-') -1 -(l-p-') '0 
0 - 1  0 1 0 -(a-l)(l-CX-~) 0 - ( l - d )  0 

0 0 - 1 0 0  -(I -p) 1 -(a - 1)(1 0 

E i = 2 x  0 0 0 0 0 0 0 0 0 .  
0 0  0 0 0  U 0 0 0 

0 0  0 0 0  0 0 U 0 
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Note that the diagonal terms of the Hamiltonian are invariant under the transformation 
( F I 2  = rIz = a) .  The coagulation rates depend on the type of the particle which survives 
the process and they are (a - 1) times smaller if the particle which survives is the one 
which jumps. There are only two coagulation rates, independent of the initial position of 
the surviving particle if a = 2. This case corresponds to the physical situation in which at 
any A B encounter at least one particle leaves the system. 

From equation (2.15) and (1.3) it is easy to see that the concentration will have an 
algebraic fall-off if 

CA@) ff -=-. 
cB(O) fi  

In this case the particle concentrations are 

(3.22) 

(3.23) 

4. Monte Carlo simulations 

Only a few chemical models have been solved exactly. For some others, quantitative 
estimates have been made with the help of approximation schemes. This is the reason why 
numerical methods have been extensively used in the study of reaction-diffusion systems. 
The dynamics of the particle density and spatial distribution can be determined with the 
help of Monte Carlo simulations [26,27]. 

The Hamiltonian formalism opens new possibilities in this field. For small chains 
numerical data can be obtained with a high accuracy by using diagonalization techniques or 
simulations. The study of the finite-size scaling behaviour (3.8) in the limit z + 0 permits 
the determination of the particle concentration for infinite chains at very large times [28]. 

In this section we present OUT numerical results concerning the asymptotic behaviour 
of the particle concentration in the one- and two-species annihilation models. We simulate 
directly the thermodynamical limit by using large lattices. 

We consider chemical systems in which no reaction is permitted which creates particles 
on a pair of empty sites. This is why  the so-called ‘direct’ Monte Carlo method [26,29] 
can be used. The way we implement this method is described in detail in [28]. 

We will first present our results for the two-state models and continue with the three-state 
models. 

4.1. The two-state annihilation-coagulation model 

The influence of the reaction rate in annihilation and coagulation models is a subject which 
has received a lot of attention in recent years (see [IO, 111 and references therein). We 
mentioned in the introduction the conjectured expression (1.2) for the concentration decay 
in the A‘ # 0 coagulation model. This result is in agreement with the conclusions of a 
numerical study we carried out in our previous work. Using a finite-size scaling analysis we 
obtained the same value for the time exponents in the leading (-i) and the next to leading 
term (-1) and we found that the coefficient of the leading term is independent of A‘ [28]. 

As mentioned there, a better test .of (1.2) (or equivalently of (3.10)) can be made 
through a direct simulation of the thermodynamic limit. Results of such computations 
are presented in [ll].  They are, in some cases, in semi-quantitative agreement with the 
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0 tow 2wo ’ 3ow 40M Ma0 6MO 
time 

Figure 1. The Monte Carlo data are represented by dashed and chain curves. Error bars are 
given only for a few points. Effects of the annihilation rate on the asymptotic behaviour of the 
particle concentration for the A + A -+ 0 + 0 reaction - R ( t )  as defined by (4.1). for A‘ = 3 
and a .  The straight line is R(1) = 1. 

conjecture presented there. We concentrate on the long-time behaviour and use smaller 
lattices as the one mentioned in [ll~]. Thus we are able to obtain very good statistics in a 
reasonable CPU time. 

We tested the conjecture (1.2) in two different ways. Simulations of the annihilation 
model were performed on a lattice of length L = 2000 for times up to a value of 
r,,, = 1.5 x io4. 

In the first set of simulations two values for the initial concentrations, 1.0 and 0.1, 
were used. A decrease of three, respectively, two orders of magnitude of the concentration 
enables us’ to reach the asymptotic regime. 300000 runs were performed in order to ensure 
a relative error of the particle concentration of less then In figure 1 the following 
quantity (see equation (3.10) with j = 0): 

is represented for A’ = 0.875 and 0.75. We see that our data converge to the value R(r)  = 1 
for which the straight line is drawn. 

Simulations were also performed for negative values of A‘. The convergence is worse, 
R(r) seems to oscillate. In this case the absolute value of the next to leading term of (3.10) 
is smaller than for positive A’s, so R(r)  approaches faster the order of magnitude of the 
numerical errors. 

A second set of simulations of the annihilation model were performed in which we 
averaged only over 20000 runs. We applied a xz test in two steps to the data. A linear 
combination of time powers was presumed: 

y = K,t-’ + ~,+~,~r-’-’’~ + Kr+lr-x-l. (4.2) 
The first fit was made for the concentration-y = ~ ( t )  taking x = 1. The coefficient of 
the leading term was determined with a confidence level greater then 99%. The first three 
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significant digits of K1p are identical with those of (Srr)-'Iz Y 0.1995. 

subtracted from the numerical data: 
The next step is to determine the coefficient of the first correction. The leading term is 

1 
y = c( t )  - - 

&i 
and a value x = 1 is used in the fit (4.2). The confidence level was good (greater then 
50%). The values for R arc listed in table 1. 

Table 1. Values of R (1.2) obtained from Monte Carlo simulations of the annihilation model. 
The two different conjectured values are 1 [Ill and 0.786 [lo]. 
A' Initial concentration c(0) Values of R from MC data 

-7 
-7 
-312 
-27128 
- 1  
-1 
-1 
-317 
-119 
112 
112 
314 
314 
718 
718 

1.00 
0.10 
1.00 
1.00 
1.00 
0.25 
0.10 
1.00 
1.00 
1.00 
0.25 
1.00 
0.10 
1.00 
0.10 

1.090 * 0.020 
1.060 *Oo.OIO 
0.940 * 0.010 
0.950 f 0.020 

. 1.000 * 0.040 
1.180 & 0.080 
1.060 * 0.080 
1.010 +0.030 
0,940 * 0.070 
1.060 5 0.040 
0.990 f 0.040 
I .OM rt 0.005 
1.030 * 0.020 
0.998 + 0.005 
1.005 * 0.005 

For most values of A' simulations of the same model with different initial concentrations 
were performed, as can be seen in table I .  The best fits were obtained for the choice of 
reaction rates corresponding to a value of A' near 1. This is easy to understand because for 
such A's the contribution of the next to leading term in (3.10) is maximal. The simulations 
corresponding to A' = :, and $ are the ones used to make figure 1. For this data the 
statistic was made by averaging over 300000 runs. 

The conclusion we draw from the results of the two tests is that the conjecture presented 
in [ I l l ,  predicting a value of R = 1 in (1.2) is correct. 

These results are valid if the data we considered before are not affected by the finite 
size of the lattice on which the simulations were performed. We check this by performing 
the simulations described in the following. 

In the asymptotic regime the system contains a low number of particles which are 
spatially separated. A particle which was not involved in a reaction represents a random 
walker. This means that at large times, of the order of the square of lattice length, finite-size 
effects should be dominant. 

We obtain a more precise quantitative picture from simulations of the annihilation model 
for times up to tmax = lo6. We use a lattice of the same length ( L  = 2000) and averaged 
over 20000 runs. Three values for the parameter A' were chosen: a. 0 and -7. Each 
simulation started with a full lattice as initial configuration. 

For an infinite system the long-time behaviour of the concentration is algebraic. 
For a finite system the concentration decay is exponential. We are interested to study 

the transition between the two types of decay,~i.e. the onset of finite size effects at large 
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Figure 2. Onset of finite size effect-the algebraic decay., Double logarithmid plot 
concentration for the one-species annihilation reaction. 

of the 

Figure 3. Onset of finite size effects-the exponential decay. Plot of the logarithm of the 
concentration for the one-species annihilation reaction. 

times. 
Figure 2 gives a log-log plot of the concentration. The straight line corresponds to 

c(t) = (8nf)-’’z. We see that for times f > IO5 the broken curves strongly deviate from 
the straight h e .  

In figure 3 which is a plot of the logarithm of the concentration we can see that starting 
from the same value of time (f = lo5) the curves fit nicely with another straight line 
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described by 

(4.3) 

The formula is obtained in the t -+ 00 limit of (3.7), for the A‘ = 0 annihilation model 

From figures 2 and 3 we conclude that the onset of the finite-size effects takes place in 
a narrow vicinity o f t  = 10s. This value is considerably smaller than L2 but much larger 
than the r,, we used. It is now clear that the results we presented in the first part of this 
section refer to the thermodynamic limit of the annihilation model. 

The slope of the line from figure 3 is equal to the energy of the first excited state of 
Hmn. We can conclude that this energy has the value 4( l -  cos(?r/L)) independent of the 
parameter A’. This confirms previous results obtained from numerical diagonalization of 
this Hamiltonian 1301. 

(c = 0). 

4.2. Numerical results for the three-state models 

The simulation of the thermodynamic limit of the two-species annihilation reaction requires 
a very large amount of CPU time. 

This has two reasons. A reliable study of the long-time decay of the concentration 
presumes simulations in which the total number of particles reduces by at least two orders 
of magnitude. The algebraic fall-off is much slower than in the A + A --+ 0 + 0 case. 
This means that we have to perform the simulations up to much higher values of tmnx than 
we did in the one-species case. 

On the other hand, if we start at t = 0 with a random distribution, there will be local 
fluctuations of the particle densities. The decay of the initial fluctuations plays an essential 
role in the dynamics of the system [17]. Their length scale extends in time. So one is 
forced to use longer lattices than in the one-species case where such domains do not appear. 

A lattice of length L = IO5 was used to simulate three state models. In the case of the 
two-species annihilation we were able to average only over 100 runs. We have chosen small 
values of the initial density. as suggested by the results obtained for the d = 2 case [NI. 
Our aim is to see if the particle concentration obeys the algebraic decay law (1.3) for the 
A - B symmetric case and to compute K’. Results from similar simulations were reported in 
[ 171 which lead to K’ = 0.280. This is in equally good agreement with the two conjectured 
values 0.252 and 0.316. 

Figure 4 shows the curve 

* ! / a  
K ( t )  = C A ( f )  - m (4.4) 

for various choices of the annihilation rate and initial site occupation probabilities. The 
simulations were stopped at values oft,,, of the order of IO6. These values of tmdX are a 
hundred times larger as the one used in [ 171. At very large times the asymptotic regime 
is reached with the three curves converging to slightly different values. However, the 
difference between the limit values is less than the sum of their standard deviations. 

Our data show a weak dependence of K f t )  on a and c(0). This suggests that K’ in 
(1.3) is a function of these parameters. This may well not be the case because the next to 
leading terms in the asymptotic development of the concentration also contribute to K ( t )  
and can determine the difference between the three curves. 
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Figure 4. Asymptotieal behaviour of the particle conc&uation in the A + B 4 Of0 reaction. 
Plot of K ( r )  as defined by (4.4). The straight line corresponds to K( I )  = (ZZ)-~‘~. 

We get the estimate K’ = 0.251 i 0.003 by averaging over the three limit values. Our 
result is important because, it shows that the conjectured dependence of the concentration 
on its initial value [I71 is most probably correct. 

The weak dependence of K ( r )  on a suggests that the asymptotic behaviour is universal 
in the sense it is independent of the annihilation rate. For a better numerical confirmation 
one should apply the procedure described in the previous section for the A + A  + 5 + 5 
case. The first step would be to determine the exponent x in (1.3) [28] and then apply xz 
tests. This would require better statistics in the determination of the asymptotic behaviour 
of the concentration. This is an  aim^ which we cannot achieve with the computer facilities 
which are currently at our disposal. 

5. Conclusions 

We found a general condition satisfied by local transformations which realize mappings 
between reaction-diffusion systems. They are N x ( N  -, I)-parameter real matrices which 
have the sum of entries in each column equal to one. 

Some new results concerning two state models are derived 
 all^ annihilation<oagulation systems corresponding to the same parameter A’ 

(equation (3.3)) are equivalent. The continuous similarity transformation which acts between 
these models is given. Results previously derived for the coagulation and annihilation 
models are generalized to the chemical systems in which both reactions are permitted. 

At this point we return to the exciton decay measurements mentioned in the introduction. 
Further experimental determinations are very desirable for two reasons: 

(i) It would be interesting to have accurate measurements of the exciton hopping time 
which is related to their diffusion constant. The coefficient of the leading term (- t-’”) 
in the exciton concentration decay can then be extracted from the experimental data [9]. 
Thus one can determinate the ratio of the exciton-exciton annihilation and coagulation rates 
(3 .lo). 

.’ 
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(ii) Lower errors in the experimental measurements of the luminescence decay would 
permit the computation of the next to leading term (its time exponent and coefficient) which 
appears in an expansion of the exciton concentration. 

If this term is of order tr3/’ (equation (3.11)) the dynamic of exciton propagation and 
reactions is described by a system which is supersymmetric [3]. This would be the first 
such system measured experimentally. The other possibility is that the next to leading term 
is of order f - l  (equation (3.10)). In both cases the determination of the leading and next- 
to-leading term and of the hopping time would permit the computation of the rates of the 
processes which take place between excitons. 

The two-states coagulation-decoagulation, annihilation-creation and death- 
decoagulation models are equivalent. This enables us to give an exact expression for the 
particle number of a probabilistic cellular automaton in which modifications of the config- 
uration occur only by starting from particle-vacancy pairs (3.13). The same observable is 
computed for the model in which the sum of the annihilation and creation probabilities is 
one (3.16). 

A reactiondiffusion system equivalent to the two-species annihilation ( A +  B + 0+0) 
is found. 

We have accurately determined the effect of the reaction rate on the long-time decay 
of the concentration in the one-species annihilation model. Our results are in excellent 
agreement with a theoretical conjecture previously made in [I I]. 

We also present quantitative analysis of the asymptotic behaviour of concentration in 
the three-states annihilation model. Results of  simulations performed for different values 
of the rate of the A + B + 0 + 0 reaction are presented. They are fully compatible with 
previous results. 
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